calibration
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| calibration [2019/07/19 16:06] – visentin | calibration [Unknown date] (current) – removed - external edit (Unknown date) 127.0.0.1 | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ====== Calibration ====== | ||
| - | The '' | ||
| - | ==== Mechanical Limits of the Axis Motors ==== | ||
| - | The axis motors have mechanical upper and lower limits. | ||
| - | |||
| - | ^Upper limit^Upper limit detail^Lower limit^ | ||
| - | |{{: | ||
| - | |Upper limit calculation shown below.| Upper limit calculation detail |Lower limit of the Axis Motor measured on the Delta robot, γ is about 5°.| | ||
| - | |||
| - | L = 17.5 \\ | ||
| - | B = 15 \\ | ||
| - | s = 4 \\ | ||
| - | |||
| - | The upper limit can be calculated as follows: | ||
| - | \\ \\ | ||
| - | //(1) tan(β) = sin(β)/ | ||
| - | //(2) cos(β) = s/y// \\ | ||
| - | \\ | ||
| - | Substitute (2) into (1) to get: \\ | ||
| - | \\ | ||
| - | //(3) L*sin(β)-B*cos(β)=-s// | ||
| - | \\ | ||
| - | Using following trigonometric formulas in (3): | ||
| - | \\ \\ | ||
| - | //(4) t = tan(β/2) // \\ | ||
| - | //(5) sin(β) = 2*tan(β/ | ||
| - | //(6) sin(β) = (1-tan^2(β/ | ||
| - | \\ | ||
| - | Leads to: | ||
| - | \\ \\ | ||
| - | //(7) (s+B)*t^2 + 2*L*t + (s-B) = 0// \\ | ||
| - | \\ | ||
| - | Solutions are: | ||
| - | \\ | ||
| - | // t1 = 0.2736 -> β = 30.6°// \\ | ||
| - | // t2 = -2.1157 (neg. solution)// \\ | ||
| - | \\ \\ | ||
| - | Hence, the maximum angle the axis can turn is // 90° + β ≅ 120°//.\\ | ||
| - | |||
| - | |||
| - | OLD OLD OLD | ||
| - | |||
| - | The subtraction of a cosine function from a sine function results in another sine function with phase shift. So we are looking for a function in the form of \\ | ||
| - | \\ | ||
| - | //(4) A*sin(β+φ) = L*sin(β)-B*cos(β)// | ||
| - | \\ | ||
| - | By using the addition theorem we get \\ | ||
| - | \\ | ||
| - | // | ||
| - | \\ | ||
| - | Now we can compare the coefficients from sin(β) and cos(β) \\ | ||
| - | \\ | ||
| - | //(5) L=A*cos(φ)// | ||
| - | //(6) -B=A*sin(φ)// | ||
| - | \\ | ||
| - | By dividing (6) by (5) we get \\ | ||
| - | \\ | ||
| - | // -B/ | ||
| - | \\ | ||
| - | Taking the square of each function and adding them together results in\\ | ||
| - | \\ | ||
| - | // L< | ||
| - | // A = sqrt(L< | ||
| - | \\ | ||
| - | Inserting the values in (4)\\ | ||
| - | \\ | ||
| - | // | ||
| - | \\ | ||
| - | we can now solve for β\\ | ||
| - | \\ | ||
| - | // | ||
| - | \\ | ||
| - | Hence, the maximum angle the axis can turn is // 90° + γ + β ≅ 120°//.\\ | ||
| - | |||
| - | ==== Mechanical Limits of the Tool Center Point Motor ==== | ||
| - | The TCP rotation is also limited by two metall pins. The maximum turn angle is calculated as follows:\\ | ||
| - | {{ : | ||
| - | |||
| - | //sin(γ/2) = r/R//\\ | ||
| - | // | ||
| - | \\ | ||
| - | That is the value for one side. The other side is identical, so the maximum turn angle is\\ | ||
| - | \\ | ||
| - | //2*PI - 2 * 0.06 = 6.16 (rad) ≅ 353°//. | ||
calibration.1563545215.txt.gz · Last modified: 2019/07/19 16:06 by visentin